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Part I: Introduction

Part I: EEG, ERPs, and from Uni- to Multivaritate Features

2



Generation of EEG Signals
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Volume Conduction in EEG
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The signal arrives with almost equal intensity at di�erent scalp locations
due to the di�erent tissue conductivities.
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Mind Spatial Smearing!

I Raw EEG scalp potentials are known to be associated with a large
spatial scale owing to volumne conduction.

I In this typical example data set, most of the channels are highly
correlated:
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The map shows the correlation
coe�cient of each channel with
channel Cz in the center.
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Areas of the Brain
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Brain lobes: Frontal, Parietal, Temporal, Occipital.
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Visualizing Potentials of Multichannel EEG as Maps
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Similarly, distributions of band-power across channels can be displayed as
topographic maps.
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Univariate Distributions of Single-Channel EEG
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Two Univariate Gaussian Distributions

In the absence of artifacts, the distributions in each single channel is
often close to a Gaussian.

Component #1

µ-σ µ µ+σ

Component #2

µ-σ µ µ+σ

But what might their joint multivariate distribution look like?
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Two-Dimensional Gaussians - Correlated or Uncorrelated
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I Two-dimensional Gaussian distributions N (µ,Σ) may have

uncorrelated (Σ diagonal) or correlated components.
I This cannot be decided from the marginal distributions (univariate

components).
I In EEG: remember spatial smearing! ⇒ Strong Correlation.
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Visualizing Two Channel EEG as Scatter Plot
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Multivariate Gaussian Distributions
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Eigenvalue Decomposition (EVD)

Given Σ ∈ Rp×p symmetric and pos. de�nite, there exists an orthonormal
matrix V ∈ O(p) of Eigenvectors and a diagonal matrix D ∈ Diag(p) of
Eigenvalues, such that

Σ = VDV>

In our case, Σ is the covariance matrix of EEG signals X ∈ Rp×T .

rotation

I The eigenvectors corresponding to the m largest eigenvalues allow a
representation of data X in an m-dimensional subspace with
minimum projection error.
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Characterization of Gaussian Distributions

Assume samples x1, . . . ,xT ∈ Rp are modeled as N (µ̂, Σ̂).

Eigenvalue decomposition of the covariance Σ̂ of X = [x1, . . . ,xT ]:

Σ̂ = VDV>, with orthonormal V and diagonal D.

(b)
I Eigenvectors are columns

of V = [v1, . . . ,vp].

I Eigenvalues are diagonal
elements di of D.

I
√
di = std(v>i X)

I In N (µ,Σ) typically µ is
considered to be the ideal true
value (signal) and Σ noise.

I The vector of Eigenvalues is
called Eigenvalue spectrum
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Ongoing Brain Activity � Brain Rhythms

The �gure shows an idealized
spectrum of EEG signals.

Most brain rhythms are idle rhythms, i.e., they are attenuated during
activation, e.g., the α-rhythm (around 10 Hz) in visual cortex:

Oz

eyes closed eyes open
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Evoked and Event-Related Potentials

Event-Related Potentials (ERPs) are brain responses that are
time-locked to some event. The event may be an external sensory
stimulus or internal, associated with the execution of a motor, cognitive,
or psychophysiologic task.

A subclass are the evoked potentials (EPs) which re�ect the processing
of the physical stimulus, rather than `higher' processes, that might involve
memory, expectation, or attention.

16



Visual Evoked Potential (VEP)

Visual evoked potentials (VEPs) are ERPs that are caused by stimulation
of a subject's visual �eld. Commonly used are, e.g., checkerboard stimlui
that �ip at an inter-stimulus interval of 1 to 3s. More speci�cally, these
are called Flash VEPs in contrast to many di�erent variants of VEPs
[Odom et al, 2004].

VEPs can be observed regardless of attention, but the amplitude depends
strongly on the focality of the stimulus.

1500 ms
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1500 ms
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Continuous Signal and Event-Related Segments
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Illustration: Single-Trials and ERPs
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Averaging Across Trials

Let us assume the ERP p(t) is constant in each trial k (k = 1, . . . ,K),
while the `noise' mk(t) is iid N (0, σ2m) distributed (for a �xed t):
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ERP-based Brain-Computer Interfaces (BCIs)

ERPs can be used in the control of a BCI. But

I there must be at least two conditions that the user can voluntarily
attain, and

I they need to be discriminable in single-trials, or at least with just
very little averaging.

21



Oddball Paradigm

I In the classical oddball paradigm (experiment) there are two kinds of
stimuli (e.g., low and high tones; or green circles and red squares).

I Stimuli are presented at regular intervals in a random sequence.

I One kind of stimuli is more frequent than the the other one, e.g.,
with a ratio of 80:20.

I The frequent stimuli are called standards and the infrequent stimuli
deviants.

I The test person has the task to `detect' the deviant stimuli and, e.g.,
to count their occurences silently.
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Basics: Oddbal Paradigm, P300, BCI Speller

Cz

deviant deviantstandard

I Segments of the signals are called epochs or single-trials.

I In BCI epochs are typically strongly overlapping. (Non-target epochs
are not shaded in this �gure.)
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Basics: Oddbal Paradigm, P300, BCI Speller
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I Segments of the signals are called epochs or single-trials.

I In BCI epochs are typically strongly overlapping. (Non-target epochs
are not shaded in this �gure.)
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Univariate Features: Averages and Single-Trials
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I ERPs can be voluntarily modulated according to an experimental
condition, here selective attention to certain target stimuli.

I The potential measured 220ms post-stimulus at Cz is a
one-dimensional observation variable: a univariate feature.
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Area under the Curve (AUC) as Measure of Seperation
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I Area Under the ROC Curve (AUC): Measure of separation of two
univariate distributions

I Applied to output of a binary classifer: AUC is a bias-independent
performance measure.
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Examples for ROC Curves and AUC Values
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Side Note: Loss Functions for Unbalanced Classes

Blue class: N1 = 900 samples, orange class: N2 = 100 samples.
Weighted error: errweighted = 1

2 (err|class 1 + err|class 2)

Examples of weighted and unweighted error � bias of classi�er is varied:

Error rate
Unweighted: 23.6%
Weighted: 25.1%
AUC-based: 16.6%

Error rate
Unweighted: 12.8%
Weighted: 30.0%
AUC-based: 16.6%

Error rate
Unweighted: 9.5%
Weighted: 39.5%
AUC-based: 16.6%
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From Uni- to Multivariate Features

For improved classi�cation of EEG single-trials, we need to accumulate
more information in the features.

I sample ERP signals at multiple time points/intervals
→ temporal feature

I join signals from multiple channels
→ spatial feature

I do both things
→ spatio-temporal feature
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Multi-Channel Epochs
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The Virtue of Multivariate Spatial Features
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I Here, w = [4/3 − 2/3]> is a simple spatial �lter.
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The Virtue of Multivariate Temporal Features
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The Virtue of Multivariate Temporal Features
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ERPs in a Head Plot
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ERPs in a Grid Plot
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ERP Topographies
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Interlude: Representation as Matrix
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Extraction of Spatio-Temporal ERP Features

Given a set of channels C and time intervals 〈Ti〉i=1,...,I , the
spatio-temporal feature are de�ned as

X(C, T ) = [mean 〈xC(t)〉t∈T1 ; . . . ; mean 〈xC(t)〉t∈TI ].

Potentials are averaged within the time intervals, and then the averaged
values are concatenated for all intervals and channels.
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Dimensionality of features: # channels × # intervals
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AUC Matrix: Selection of Channels and Time Intervals
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I Each cell in the matrix is one uni-variate feature.

I Multi-variate features: typically full set of channels

I Time intervals chosen by a heuristic based on AUC values.
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Multivariate ERP Features
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Summary: Representation of Multivariate Distributions
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Distribution of ERP Features

For classi�cation, we have to consider the distribution of those features.
According to our model (ERPs are constant across trials):

x(k)(t) = p1(t) + m(k)(t) for trials k of condition 1

x(k)(t) = p2(t) + m(k)(t) for trials k of condition 2

with Gaussian noise: m(·)(t) ∼ N (0,Σ). Empirically, the Gaussian
assumption seems justi�ed:
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For features of ERP data:

I µ1: ERP of condition 1

I µ2: ERP of condition 2

I Σ: noise: non-phase-locked
activity (independent of
condition)

[Blankertz et al, NeuroImage 2011]
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Interlude: Matrix Speller (Classical ERP-based Typewriter)

Classical example: Matrix Speller

I User concentrates on a symbol

I Rows and columns are intensi�ed
randomly

I Target rows and columns elicit
speci�c ERPs (oddball)

I BCI detects target ERPs
(averaged over few repetitions)

ä E�ective communication
[Farwell & Donchin, 1988]
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Critical Questions

I Do the positive results of the Matrix Speller transfer to the target
patient group?

I More speci�cally, how much does the performance depend on
�xating the target symbol by gaze?

The latter question was addressed with a speci�c study (see subsequent
slides. But getting aware of such issues is already possible when the
original data are investigated thoroughly.

This illustrates that, it is important to be aware of where discriminative
information in a BCI originates from, and in particular,

I ML methods should not be uesd as black box

(i.e., just doing classi�cation and looking at the results).
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The Role of Gaze Control in the Matrix Speller

Matrix Speller - Overt
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The Role of Gaze Control in the Matrix Speller
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Part II: Classi�cation

Part II: Classi�cation of ERP Features
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Nearest Centroid Classi�er (NCC)

(a) Let us assume a simple setting of a classi�cation problem with little
information: Only the means (or centroids) µ1 and µ2 of the two
distributions are known.

(a) half-plane
classified as class 2

half-plane
classified as class 1

separation line

(b) (c)

(b) This leads to a linear separation of the space with the separation line
(or hyperplane in higher dimensions) intersecting perpendicularly the line
connecting the centroids in the middle. (c) Mathematical formalism:
Classify according to the sign of w>x− b with w := µ2 − µ1.

48



Can We Expect NCC to Perform Well for ERP Features?
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Linear Discriminant Analysis (LDA)

Using probability theory, one can derive from the following three
assumptions the optimal classi�er for the given class distributions.
Optimality means that the classi�er has the minimum risk of

misclassi�cation for new samples that are drawn from these class

distributions.

1. Features of each class are Gaussian distributed.

2. Gaussians of all classes have the same covariance matrix.

3. True class distributions are known.

This optimal classi�er is called Linear Discriminant Analysis (LDA) and it
can be formalized in the following way: Given two Gaussian distributions
N (µ1,Σ) and N (µ2,Σ), LDA is de�ned by the normal vector

w = Σ−1(µ2 − µ1) and bias b = w>(µ1 + µ2)/2. (1)

First we will look at how the LDA classi�cation looks like and later
discuss the assumptions.
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Linear Disciminant Analysis

(a) Means as in the NCC example, but speci�c distributions are shown.
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(c) whitened
space

(b) In Linear Discriminant Analysis, a common covariance matrix for
both classes is estimated, which describes the (class-independent) noise.
Note, that x is classi�ed here di�erently with LDA than with NCC.
(c) Correspondence to NCC via whitening.

Knowing the noise (Σ) improves classi�cation!
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Linear Discriminant Analysis � Assumptions for Optimality

Now, we come back to the assumptions which are required to warrant
optimality of the LDA classi�er:

1. Features of each class are Gaussian distributed.

2. Gaussians of all classes have the same covariance matrix.

3. True class distributions are known.

We will verify the �rst two assumptions empirically by investigating one
exemplary dataset. The last assumption will be discussed later in this
lecture.
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Mean and Eigenvalue Spectrum for a P300 Data Set
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ä In the following, we will look at the PCs (Eigenvectors) that
correspond to the four largest Eigenvalues.
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Distribution of the Noise

Scatter plots of projections on PCs (wrt. 4 largest Eigenvalues):
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ä These projections look very much Gaussian.
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The Structure of the Noise
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ä Covariances of both classes look very similar.
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For Comparison: Covariances in Handwritten Digits

average

pc  #1 pc  #2

pc  #3 pc  #4

µ

Σ

average

pc  #1 pc  #2

pc  #3 pc  #4

ä Here, covariances of both classes do not look similar.
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Validation of Classi�cation Procedures

To validate the performance of a classi�er, one needs to have a

I training set on which all parameters of the model are estimated
(weights of the classi�er; selection of features etc.), and a

I validation set on which the performance is calculated.

These sets of samples have to be disjoint and INDEPENDENT.

To that end, one can use a �xed training and validation set (e.g., �rst
half / second half) or cross-validation.

See [Lemm et al, NeuroImage 2011] for details on validation.
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Application of (Purely) Temporal Features

Single channel data does (in most cases) not contain su�cient
information for a competitive classi�cation. An application of temporal

features can be used to investigate the spatial distribution of
discriminative information:

 

 

s
e
le

c
ti
o
n
 a

c
c
u
ra

c
y
  
[%

]

25

30

35

40

45

50
For each single channel the
classi�cation performance is
determined for temporal features
with LDA by cross validation. The
resulting error values can be
visualized as scalp topography.

Here, two foci are discernible,
probably related to visual and
cognitive areas.
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Application of (Purely) Spatial Features

Spatial features can be used to investigate the distribution along time of
discriminative information:
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The classi�cation error of
spatial features was
determined for each time
interval of 30 ms duration,
shifted from 0 to 1000 ms.
(Here, chance level was
16.6%).

In some settings, classi�cation of spatial feature may already yield
powerful classi�cation, given an appropriate selection of the time interval.
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Application of (Purely) Spatial Features

Spatial features can be used to investigate the distribution along time of
discriminative information:
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0.2 LDA trained on spatial
features extracted from the
time interval 380�410 ms.
The resulting weight vector
can be visualized as a
topography and can be
regarded as a spatial �lter.

For the interpretation of spatial �lters, you have to act with caution. This
issue will be discussed in a later part of the lecture.
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Results of Classifying Spatial Features

Classifying on various spatial features results in error rates between 14%
and 31% in this example data set (visual speller):
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Classi�cation of Spatio-Temporal Features

Advancing from temporal or spatial features to spatio-temporal features
means increasing the information.

Accordingly, a better classi�cation performance is to be expected.

But in our example data set, the classi�cation error increases from

I 14% for the spatial feature at the best interval to

I 25% for spatio-temporal features

when classifying with LDA. ??
??

??
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Over�tting

Using a larger (more complex) function class allows a better �t with the
training data. This is the case, e.g., if the dimensionality of the feature
space is increased.

However, despite a low training error, the selected function might not
describe the regularity in the data well. It may also be over�tted to the
noise that is present in the particular set of samples that is available as
training data.

This over�tting becomes apparent in a cross-validation when the error on
the training data deviates substantially from the error on the test data.
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Over�tting in LDA

When LDA was applied to high-dimensional (spatio-temporal) features,
the performance broke down (result worse than on sub-features).

Given the optimality theorem, this should not happen. Or?

So far, we did not discuss the third assumption:
The true distributions are known.

I This assumptions is always violated in non-arti�cial problems.

I Distribution parameters have to be estimated from given data.

I Estimated (empirical) distribution parameters necessarily deviate
from the true ones.

I How much this deviation deteriorates performance depends on
various factors.

63



Bias in Estimating Covariance Matrices

For LDA we need estimates for the distribution parameters:

I µ̂ = 1
n

∑n
k=1 xk empirical mean

I Σ̂ = 1
n−1

∑n
k=1(xk − µ̂)(xk − µ̂)> emp. covariance matrix

But, if the number of samples n is not large relative to the dimension d,
the estimation, in particular Σ̂, is error-prone.

This may a�ect classi�cation with LDA badly.

There is a systematical bias in the empirical covariance matrix:

I Large Eigenvalues of Σ̂ are too large

I Small Eigenvalues of Σ̂ are too small

assuming x1, . . . ,xn ∈ Rd are drawn from N (µ,Σ).
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Bias in Estimating Covariances (2)

Simulation for d = 200:
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A Remedy for the Estimation Bias

A simple way that counteracts the bias is shrinkage:
The empirical covariance matrix Σ̂ is modi�ed to be more spherical:

Σ̃(γ) = (1− γ)Σ̂ + γνI

for a γ ∈ [0, 1] and ν de�ned as average Eigenvalue trace(Σ̂)/d.

Σ(0.5)
∼

Σ
^

νΙ

Next, we check that shrinkage serves the
intended purpose. Covariance matrices
are described by their Eigenvectors and
Eigenvalues. So, we have to investigate,
what happens to those, when we change
over from the empirical covariance
matrix Σ̂.
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Properties of the Shrunk Covariance Matrix

From the Eigenvalue decomposition of the empirical covariance matrix
Σ̂ = VDV> with orthonormal V and diagonal D, we get an Eigenvalue
decomposition of Σ̃(γ) = (1− γ)Σ̂ + γνI like this:

Σ̃(γ) = (1− γ)VDV> + γνI

= (1− γ)VDV> + γνVIV>

= V ((1− γ)D + γνI)︸ ︷︷ ︸
diagonal matrix

V>

We see that

I Σ̂ and Σ̃(γ) have the same Eigenvectors (columns of V)

I Extreme Eigenvalues (large/small) are shrunk/extended towards the
average Eigenvalue ν as di 7→ (1− γ)di + γν

I γ = 0 means no shrinkage: Σ̃(0) = Σ̂

I γ = 1 corresponds to spherical covariances matrices: Σ̃(1) = νI
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Regularized Linear Discriminant Analysis

This technique can be used to enhance LDA to work better in the case of
a low number-of-samples to dimensionality ratio. The empirical
covariance matrix Σ̂ is replaced by a shrunk covariance matrix Σ̃(γ):

wγ := Σ̃(γ)−1(µ2 − µ1)

Here, γ is a hyper parameter that has to be selected between 0 and 1.

I γ = 0 yields w0 = Σ̂−1(µ2 − µ1), i.e. unregularized LDA

I γ = 1 yields w1 = µ2 − µ1, i.e. NCC

Before addressing the choice of γ, let us look at the impact of the
shrinkage parameter.
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Impact of Shrinkage as Trade-o�

LDA with shrinkage: w = Σ̃(γ)−1(µ2 − µ1);
Σ̃(γ) = (1− γ)Σ̂ + γνI

(LDA)

(NCC)
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Impact of Shrinkage as Trade-o�

With increasing shrinkage, the spatial �lters (classi�er) look smoother,
but classi�cation may degrade with too much shrinkage.
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LDA with Di�erent Shrinkage Parameters

Cross-validation results for di�erent sizes of training data (250, 500,
2000) for di�erent values of the shrinkage parameter γ (x-axis). Features
vectors have 250 dimensions.
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Optimal Selection of Shrinkage Parameter

As a (relatively) novel method for selecting the free parameter (γ) other
than cross-validation, there is an analytical method.

Let x1, . . . ,xn ∈ Rd be n feature vectors and let µ̂ = 1
n

∑n
k=1 xk be the

empirical mean.

Aim: get a better estimate of the true covariance matrix Σ (especially in
case n < d) than the sample covariance matrix

Σ̂ =
1

n− 1

n∑
k=1

(xk − µ̂)(xk − µ̂)>

by selecting a γ in

Σ̃(γ) := (1− γ)Σ̂ + γνI.
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Optimal Selection of Shrinkage Parameter

The approach of [Ledoit & Wolf, J Multivar Anal, 2004] is to minimize

||Σ̃(γ)−Σ||2F with ||·||2F being the Frobenius norm.

We denote by (xk)i resp. (µ̂)i the i-th element of the vector xk resp. µ̂
and de�ne the covariance of feature i and j in trial k:

zij(k) = ((xk)i − (µ̂)i) ((xk)j − (µ̂)j)
>

Denoting by sij the element in the i-th row and j-th column of the matrix

Σ̂− νI, the optimal shrinkage parameter γ? = argminγ ||Σ̃(γ)−Σ||2F can
be analytically calculated as [Schäfer & Strimmer 2005]

γ? =
n

(n− 1)2

∑d
i,j=1 vark(zij(k))∑d

i,j=1 s
2
ij

.

Shrinkage-LDA: use Σ̃(γ?) instead of Σ̂.
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Classi�cation with Shrinkage-LDA at a Glance

NCC LDA

Shrinkage-LDA

0 1
[shrinkage parameter]
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Shrinkage-LDA hyperplane is de�ned by:

w := Σ̃(γ?)−1 (µ2 − µ1)

Σ̃(γ) := (1− γ)Σ̂ + γνI

Calculate optimal γ? analytically:

γ? = argmin
γ
||Σ̃(γ)−Σ||2F

=
n

(n− 1)2

∑d
i,j=1 vark(zij(k))∑d

i,j=1 s
2
ij

with

zij(k) := ((xk)i − (µ̂)i) ((xk)j − (µ̂)j)
>

Selection of shrinkage parameter γ:
[Ledoit & Wolf 2004], [Schäfer & Strimmer 2005]

Tutorial on ERP classi�cation:
[Blankertz et al, NeuroImage 2011]
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Classi�cation on Single Components and Combined
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Classi�cation (with N = 750 training samples) on seven di�erent single
components (d = 55) yields errors between 14% and 31%.

LDA on the concatenated feature (d = 7 · 55 = 385) performs with 25%
worse, although information is added: over�tting.

Shrinkage-LDA: only 4% error. [Blankertz et al, NeuroImage 2011]
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Center Speller

To counteract the problems in visual layout of the Matrix Speller, a new
paradigm for gaze-independent spelling was established:

ä The Hex-o-Spell selection principle:
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[Matthias Treder & Blankertz, Behav Brain Funct 2010]
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Gaze Independent ERP-Speller

Center Speller
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Center Speller: Results - ERPs
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Results - Online Spelling Performance

Online symbol selection accuracy was 100% for 10 out of 13 participants.
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Results - Simulated Spelling Performance
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Notes performance measures for spellers: [Blankertz et al, in prep.]
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Part III: Linear Model

Part III: The Linear Model of EEG / Spatial Patterns and Spatial
Filters
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Linear Model of EEG: Forward Model

I Assumption: The contribution of a current source s(t) to the scalp
potentials x(t) = [x1, . . . , xk]

> is linear in s(t):

x(t) = [a1s(t), . . . , aks(t)]
> = a s(t)

I The proportionality factors in vector a are typically unknown and
depend on the spatial distribution and orientation of the current
source and the conductivity distribution of the anatomy.
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Linear Model of EEG: Forward Model (2)

I Now, we consider several sources with distribution vectors a1, . . . ,ap.

I Potentials are additive. De�ning the matrix A as being composed of
the vectors a1, . . . ,ap (i.e., A = [a1, . . . ,ap]), the Forward Model
is

x(t) = A s(t) = a1 s1(t) + a2 s2(t) + . . .ak sp(t)

I Contributions not captured by this model are considered as noise,
n(t), typically assumed to be Gaussian distributed.

I This gives a simple linear model representing the electrophysics of
EEG:

x(t) = A s(t) + n(t)
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Linear Model of EEG: Backward Model

Recovering of sources is formalized in the backward model:

ŝ(t) = W>x(t)

Given a forward model A, taking W> as A# = (A>A)−1A>, the
pseudo inverse of A, is the least mean squares estimator:

arg minV
∑
t

||V>As(t)− s(t)||2 = A#

Note that, even for invertible A a backward model captures also the
portion of the noise that is collinear with the source estimates.

ŝ(t) = s(t) + W>n(t).

Anyway, A is unknown and di�cult to estimate (inverse problem).
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Linear Model of EEG

LDA, PCA, ...

sources EEG extracted
components

forward model backward model

Each column of A is a spatial pattern: propagation of a source to sensors
Each row of W> is a spatial �lter: weighting of EEG channels.
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Patterns and Filters in the Linear Model of EEG

LDA, PCA, ...

sources EEG extracted
components

forward model backward model

Pattern:
propagation of
one source

Filter:
extraction of
one component
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Explaining Spatial Patterns and Spatial Filters

-1

0

1

2

4
x(t) = a1s1(t)

potential at x
1

p
o
te

n
tia

l a
t 
x 2

-5 0 5

-5

0

5

s
1
(no noise)

2

4

86



Explaining Spatial Patterns and Spatial Filters
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Explaining Spatial Patterns and Spatial Filters
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Explaining Spatial Patterns and Spatial Filters
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Explaining Spatial Patterns and Spatial Filters
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Explaining Spatial Patterns and Spatial Filters
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Correspondence of Vectors in Feature Space and Patterns
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Correspondence of Vectors in Feature Space and Patterns
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Special Case: The Linear Model According to PCA

Using PCA (Eigenvalue decomposition) one gets a linear model in which
the `sources' (not meant to approximate the real ones) are uncorrelated.
Given signals x(t), the empirical covariance matrix Σ̂ is decomposed as

Σ̂ = VDV>

with diagonal D and VV> = I.

The sources in the PCA model are

ŝ(t) = V>x(t) (backward model)

and they are projected to the sensors with the same matrix:

x(t) = V>ŝ(t) (forward model)

⇒ In this model, patterns and �lters coincide!
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Recap: Classi�cation of (Purely) Spatial Features
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The weight vector of an LDA
trained on spatial features
can be visualized as a
topography and can be
regarded as a spatial �lter.

For the interpretation of spatial �lters there is a caveat, that we will
discuss next.
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Interpretation of Spatial Filters (Recapitulation)

Let's assume we have a mixture of two sources (ignoring the noise here)

x = a1s1 + a2s2

and the task is to �nd a spatial �lter w to recover s1. Applying the �lter
to x yields

w>x = w>a1s1 + w>a2s2

Case 1: a>1 a2 = 0 (untypical). Then w = a1 does the job: For
orthorgonal propagation vectors, the best �lter corresponds to the
propagation direction of the source, i.e., a pattern.

Case 2: a>1 a2 6= 0 (typical). To recover s1, the �lter w needs to be
chosen such that w>a2 = 0, i.e., the �lter w is orthogonal to a2.
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Interpretation of Spatial Filters (Conclusion)

In the typical case (a>1 a2 6= 0), the best �lter w to recover source s1 also
depends on the interfering source s2, as it must be orthogonal to its
propagation vector a2.

Example. We would like to extract

I s1, the cognitive P300 component

but there is interference from

I s2, the visual area.

The best �lter to recover the P300 component (s1) depends also on the
interfering source of the visual area (s2). In particular, the spatial map of
the �lter probably shows strong weights over occipital area, although the
P300 component originates from the central region.
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Understanding Spatial Filters
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Understanding Spatial Filters

(a)
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Two channel classi�cation of (a): 15% error, (b): 37% error

When disturbing channel Oz is added to the data (3D): 16% error. Here,
channel Oz is required for good classi�cation although itself is not
discriminative.96



Part IV: Oscillations

Part IV: Feature Extraction and Classi�cation for Modulations of
Oscillatory Brain Activity
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SMR-based BCI Systems
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Modulation of Brain Rhythms

Most rhythms are idle rhythms, i.e., they are attenuated during
activation.

I α-rhythm (around 10 Hz) in visual cortex:

Oz

eyes closed eyes open

I µ-rhythm (around 10 Hz) in motor and sensory cortex:

C4

arm movesarm at rest
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Modulation of SMRs in Motor Imagery

Data from an individual with very clear and prototypical patterns:
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The E�ect of Spatial Filtering

In practice, the di�erence might not show up so pronounced:
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Reminder: Prominent Problem in EEG is Spatial Smearing

I Raw EEG scalp potentials are known to be associated with a large
spatial scale owing to volumne conduction.

I In this typical example data set, most of the channels are highly
correlated:

0

0.1667

0.3333

0.5

0.6667

0.8333

1
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This May Help: Spatial Filters

I Bipolar: Subtract values from two electrode positions, e.g.:
BipC3,FC3 = C3− FC3

I Common Average Reference (CAR): Subtract the average of all
EEG electrodes (C = {F3,Fz,F4,C3,Cz,C4, . . . }) from the given
electrode: C3CAR = C3− 1

|C|
∑

C∈C C

I Laplace (Lap): Subtract from each channel the average of its
immediate neighbours: C3Lap = C3− 1/4(FC3+ C1+ CP3+ C5)
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Data Driven Spatial Filters

I Principal Component Analysis (PCA): A data-driven method
that can be used, e.g., to extract components of most variance in
the data, see �rst lecture.

I Independent Component Analysis (ICA): Data-driven methods
that extract components of independent activity. If succesful, these
components correspond to sources in the brain.

I Common Spatial Patterns (CSP): A data-driven method that can
be used to �nd optimized �lters that re�ect amplitude modulations
of brain rythms (topic of today).
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The E�ect of Spatial Filtering
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Analysis of Motor Imagery Conditions: Spectra
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First step: determine a suitable frequency band that shows good
discrimination between the conditions.

Next, we investigate the time course of band power.
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Calculation of ERD/ERS Curves

1000 1500 2000 2500 3000 3500 4000 4500 [ms]

raw

band−pass

rectified

average

smoothing

...
single
trials

across
trials

ERD/ERS: Event-Related (De)Synchronization. These curves display
time courses of band-power.
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ERD/ERS Curves of Motor Imagery
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Topography of ERD Curves of Motor Imagery
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Remark

Using the Hilbert transform, ERD/ERS curves of single-trial can be
determined. Those could in principle be classi�ed in the same way as
ERPs.

However, this does mostly result in a weak classi�cation performance.
The reason for that will become appearant later (e.g., slide �Demixing has
to be [...]�).

Next, we discuss �rst the extraction of band-power features disregarding
the spatial mixing of sources, and then take care of spatial �ltering.
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Extraction of log Band-Power Features
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Interlude: BCI based on Covert Shits of Attention

Following the MEG experiment of [van Gerven & Jensen, J Neurosci Methods 2009]:

I Study with N = 8 participants [Nico Schmidt et al, IEEE SMC 2010].
I After 1000 ms �xation, a cue indicated the direction in which the

participant had to covertly shift attention.
I After a variable amount of time (500�2000 ms), a target (`+' or `×')

appeared that had to be detected.
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Important Details of Experimental Design

I Fixation of central dot: prevent eye movements.
I Cue-to-target interval was

◦ 2000 ms in 50% of the trials: Long period of focused attention
◦ 500 ms in 30% of the trails: Force quick and time locked shifts of

attention
◦ >500ms and <2000ms in 20% of the trials: Sustain attention of the

whole time interval

I Cue target direction without a direction speci�c cue: Each
participant had a target color blue, red, or green, which indicated the
direction in with s/he had to covertly shift attention.

I The target was replaced after 200 ms by a masker (`∗') to prevent
an afterimage to increase task di�culty (i.e., require more focused
attention).

I Response: Indicate type of target (`+' or `×') by button press with
the right or left hand: to validate task compliance, in combination
with the next point.

I There were 80% valid and 20% invalid trials, in which the target
appear at a location di�erent from the cued one to validate task
compliance
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Behavioral Results

I Overall response accuracy (RACC) was 86.62%± 8.46% SEM.

I Paired t-test: RACC was not signi�cantly di�erent in valid vs. invalid
condition (p = .199).

I Geometric means of reaction times were signi�cantly smaller in the
valid condition than in the invalid one (t = 4.49, p < .01):
valid: 719 ms ± 51 ms SEM; invalid: 881 ms ± 76 ms SEM.

I ⇒ participants attended correctly the cued positions.
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Topographies of Alpha Modulation
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I Left: Contralateral Alpha ERD 600�900 ms after cue onset

I Right: Ipsilateral Alpha ERS 1700�1900 ms after cue onset
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Di�erential Alpha Modulation (L vs R; top vs bottom)
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However, even best the binary classi�cation is only 66 to 87%.
[Matthias Treder et al, J Neuroeng Rehabil 2011]
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Demixing has to be Performed Before Feature Extraction

Typically, the information is more mixed across channels than in the
previous �gure (even after Laplace �ltering):
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Calculating log-variance in those raw channels would make this mixing of
information irreversible for subsequent classi�cation.
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Preprocessing for Band-Power Features

In order to obtain good band-power features, we typically need to apply
some spatial �ltering before calculating log band-power.

Note, that for ERP features, spatial �ltering was done implicitly by the
classi�er. The extraction of band-power features involves non-linear
processing. In that case, spatial �lters have to be applied in advance.

To this end, we will use Common Spatial Patterns (CSP) Analysis
[Fukanaga 1990]. The goal of CSP is to determine spatial �lters that
optimally capture modulations of brain rhythms.
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The Goal of Common Spatial Pattern (CSP) Analysis

The goal of CSP: Determine spatial �lters such that (log-) variance in
an epoch of each �ltered signal is indicative of the class.

2425 2430 2435 [s]

csp:L

csp:R

right left right

CSP analysis yields spatial �lters that can be visualized:

CSP

filter

’right’

CSP

filter

’left’

But the caveat for the interpreation of �lters also applies here.
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CSP Analysis Interpretation as Linear Source Model

CSP analysis can be interpreted in terms of our linear model of the EEG:

sources EEG

forward
model

backward
model

min 
var for
'right'

min 
var for

'left'

min var for 'right':

min var for 'left':

no discriminative information:

extracted
components

For CSP analysis it does not matter, whether the extracted components
correspond to single sources. The aim is only to extract most
discriminative components.
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Illustration of CSP in 2D

1 2

Left: The blue and orange ellipsoids refer to the two class conditional
covariance matrices, while the covariance sum is depicted in white.
(Means of the distributions are shifted away from the origin for better

illustation.) Central: Data distribution after whitening with respect to
the covariance sum. Right: After a �nal rotation, the variance along the
horizontal direction is maximal for the blue class, while it is minimal for
the orange class and vice versa along the vertical direction.
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Generalized Eigenvalue Decomposition

Generalized Eigenvalue Decomposition denotes the following theorem,
which is also called Simultaneous Diagonalization:

Given A, B ∈ Rp×p symmetric and pos. de�nite (satis�ed for

covariance matrices), there exists an invertible matrix

W ∈ Rp×p and a diagonal matrix D ∈ Diag(p), such that

AW = BWD & W>BW = I (2)

A proof of that theorem can be found on wikipedia.org:
Positive-de�nite matrix → Simultaneous diagonalization.

Multiplying the �rst equation by W> from the left, and then using the
second equation, we obtain

W>AW = W>BWD = D (3)
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CSP with Generalized Eigenvalue Decomposition

Thus, we obtain CSP analysis by performing a generalized Eigenvalue
decomposition wrt. the matrices Σ1 and Σ1 + Σ2, cf. eqns (2) and (3):

W>Σ1W = D & W>(Σ1 + Σ2)W = I (4)

This gives a CSP �lter matrix W (backward model; typically not

orthogonal) which is the simultaneous diagonalizer of Σ1 and Σ2:

W>Σ1W = Λ1, with Λ1 := D (5)

W>Σ2W = Λ2, with Λ2 := I−D

In particular, the scaling is such that Λ1 + Λ2 = I.

In Matlab this can be done by
� [V,D]= eig(Sigma1, Sigma1+Sigma2).
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CSP Analysis Supported by the Linear Source Model

But: Can we hope that there exists a useful solution? (If all generalized
Eigenvalues are near 0.5, there is no gain of discriminative information.)

According to neurophysiology (see above), the sources in the sensorimotor areas

have low band-power (small variance in the band-pass �ltered signals) during

motor imagery of the contralateral hand and high band-power for the

ipsilateral hand. Accordingly, appropriate CSP �lters should exist as backward

model.

sources EEG

forward
model

backward
model

min 
var for
'right'

min 
var for

'left'

min var for 'right':

min var for 'left':

no discriminative information:

extracted
components
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Practical Wrap-Up of CSP

EEG-signals during motor imagery, band-pass �ltered (here 9�13 Hz):

C3

C4
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cl #1 (left)

cl #2 (right)(chans × T1)

(chans × T2)

right left right

W>Σ1W = D & W>(Σ1 + Σ2)W = I

1) choose eigenvector wi from W having a large eigenvalue di w.r.t. Σ1.

CSP

728 730 732 734 736 738 [s]

right left right

var(w>
i X1) = di large

var(w>
i X2) = 1−di small
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Work Flow of the Whole CSP Filtering Procedure
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Training a Classi�er on CSP-based Features

To obtain features from the CSP �ltered EEG, in each channel and trial,
the variance across time is calculated and the logarithm is applied. On
the right there is a scatter plot of the resulting CSP features:
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Here, only two dimensions are shown. Note, that applying the logarithm
to the band power features makes the distribution more Gaussian and
therefore enhances linear separability.
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Training of CSP-based Classi�cation

I Determine most discriminative frequency band,

I band-pass �lter EEG in that band,

I extract single trials using the time interval in which ERD/ERS is
expected,

I calculate and select CSP �lters,

I and apply them to EEG single trials,

I calculate the log variance within trials.

This results in a low dimensional feature vector for each trial
(dimensionality equals number of selected CSP �lters).

I Train a linear classi�er like LDA on the features.
(Since these features are low-dimensional, shrinkage is typically not
necessary.)
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Applying CSP-based Classi�cation

I Project band-pass �ltered EEG with spatial CSP �lters,

I calculate the variance in short windows (e.g. last 500 ms),

I take the logarithm,

I and apply the classi�er weighting.
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filter

log
variance

For more details on CSP see [Blankertz et al, IEEE Sig Proc Mag 2008].
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Caveats in Validation

When machine learning techniques are used for classi�cation of EEG
single-trials, the expected performance of a method has to be evaluated
carefully, and there are several possible pitfalls.

The estimation of generalization performance requires a training and a
test set. The estimation is only proper

I if the test set was not used in any way to determine parameters of
the method, and

I if the samples in the test set are independent from the samples in
the training set.

Although these principles are quite obvious, it happens that they are
violated (mostly unintentionally).
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Validating a CSP-based Classi�cation Method

Crucial measure: generalization performance, i.e., the accuracy
obtained when the classi�er is applied to new data, which have not been
used in any way before.

Note: When a preprocessing step (like CSP) uses the class labels, it
needs to be performed on the training sets only! Take the spatial �lter
obtained by CSP on the training data and apply it to the test data.

For cross-validation this means, that CSP has to be applied in each fold
on the training set and transfered to the test set.
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Demo: Faulty Validation in CSP-based Classi�cation
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On data sets of 80 volunteers performing motor imagery, CSP-based
classi�cation was validated in a proper way (CSP within cross-validation)
and in one incorrect way, where CSP �lters have been calculated from the
whole data set and only classi�cation was cross-validated.
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Illustration of Multiplication by Covariance Matrix

rotation: rotation:scaling:

1. Step. The multiplication of a vector with the orthonormal matrix V> is a rotation.
The calculation shows, that the rotation is de�ned by mapping the Eingevectors vi to
the coordinate axes. 2. Step. The multiplication of a vector with the diagonal matrix
D is a scaling along the coordinate axes. 3. Step. The multiplication with V is the
inverse rotation to the multiplication with V> (due to orthonormality). This means
the coordinate axes are mapped `back' to the Eigenvectors.
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Illustration of Whitening Transform

rotation: rotation:scaling:

The whitening transform maps the space such that a Gaussian distribution with

the given covariance matrix becomes a stanard normal distribution, i.e., the

variance in all directions is one. It maps the ellipsoid given by the standard

isodensity line of the Gaussian distribution to the unit sphere.
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Another view: CSP as Optimization Problem

Let X1 ∈ RC×T1 be the concatenation of all band-pass �ltered trials of
class 1 along the time dimension (T1 is the total number of time points of
all trials of class 1, and C being the number of channels), and let X2 de
de�ned analogously for class 2.

Σi =
1
Ti

XiX
>
i ∈ RC×C are the corresponding covariance matrices

(mean does not need to be subtracted � it is zero anyway, due to
band-pass �ltering).

Then the CSP �lter w1 that maximizes variance for class 1 is determined
by the following optimization:

argmax
w∈RC

var(w>X1)

var(w>X1) + var(w>X2)
= argmax

w∈RC

w>Σ1 w

w>(Σ1+Σ2)w

This optimization is solved on the next slide.
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CSP with the Rayleigh Coe�cient

We de�ne the Rayleigh coe�cient wrt the sym. matrices A and B as

RA,B(w) =
w>Aw

w>Bw
.

In order to obtain CSP �lters, we need to �nd the min (resp. max) of R.

The Min-Max Theorem states: λ1 ≤ RA,B(w) ≤ λC , if
λ1 ≤ · · · ≤ λC are the generalized Eigenvalues of A and B.

Let wi be the corresponding Eigenvectors (i.e., Awi = λiBwi). Then

RA,B(wi) =
w>i Awi

w>i Bwi
=

w>i λiBwi

w>i Bwi
= λi

Accordingly, the min (max) of R is attained for w1 (for wC). However,
practically CSP is determined by Eigenvalue decomposition as above.
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