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Detection theory, or signal detection theory, is a means to quantify the ability to discern 
between information-bearing patterns (called stimulus in humans, signal in machines) and 
random patterns that distract from the information (called noise, consisting of background 
stimuli and random activity of the detection machine and of the nervous system of the 
operator).
(http://en.wikipedia.org/wiki/Detection_theory)

Signal detection theory (SDT),...is a framework of statistical methods used to model how 
observers classify sensory events.
(Knoblauch, K. & Maloney, L. T. (2012) Modeling Psychophysical Data in R, Ch. 3)

Signal Detection Theory (SDT) was introduced...to address the problem of observer bias. 
In a simple Yes-No task, a psychometric function summarizes the probability of a ‘Yes’ 
response. However, this probability confounds the observer’s ability to detect the presence 
or absence of a signal with any preference the observer may have to respond ‘Yes’. Even 
when the signal intensity is zero (no signal is presented), the observer may still respond 
‘Yes’....The ... response measures are combined to allow separate estimates of a measure 
of the observer’s sensitivity to the signal and the observer”s bias (tendency to say 
“Present” independent of the presence or absence of the signal).
Knoblauch, K. & Maloney, L. T. (2012) Modeling Psychophysical Data in R, Preface)

Signal Detection Theory (SDT):  some definitions

http://en.wikipedia.org/wiki/Stimulus_(psychology)
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Detection Experiment (SDT)

Yes/No (Present/Absent) Experiment:

The Stimulus:
A signal is chosen by the experimenter and on a set of N trials, is divided randomly into
r Signal-Present and N-r Signal-Absent trials (often r = N-r).

The Task:
On each trial, the observer must make a decision (classify the trial) and respond as to 
whether the signal was Present or Absent.  

This leads to 4 possible outcomes:
Stimulus Present  /  Response Present:   Hit
Stimulus Present  /  Response Absent:    Miss
Stimulus Absent   /  Response Present:   False Alarm
Stimulus Absent   /  Response Absent:    Correct Rejection 

Signal Not Signal
Yes Hit (H) False Alarm (FA)
No Miss (M) Correct Rejection (CR)



Signal Not Signal

Yes PH = P (Y | Present) PFA = P (Y | Absent)
No PM = P (No | Present) PCR = P (N | Absent)

Signal Not Signal
Yes Hit (H) False Alarm (FA)
No Miss (M) Correct Rejection (CR)

Response Classification Table

Over N trials, we can calulate the proportion of trials that fall in each of the
four categories to estimate the probabilities of each category:

or

PH =1� PM

PFA =1� PCR

Notez Bien:

Signal Not Signal

Yes PH = #Y es/#Present PFA = #Y es/#Absent

No PM = #No/#Present PCR = #No/#Absent



Signal Detection Theory:  Equal Variance Gaussian Model
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Noise Signal + Noise

Decision Rule:
If response > c, choose “Yes”
       otherwise, choose “No”

d0 = ��1(PH)� ��1(PFA)

c =� 0.5(��1(PH) + ��1(PFA))

Closed form (maximum likelihood) solution:



Go to shiny demo for ROC demo
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Example 1
Simple detection task:  Gabor temporal modulation in noise

16 sessions of 224 trials (3584 total).
Signal present on half of the trials.

Hit = P(Resp = Present | Stimulus = Present)
Miss = P(Resp = Absent | Stimulus = Present)
False Alarm = P(Resp = Present | Stimulus = Absent)
Correct Rejection = P(Resp = Absent | Stimulus = Absent)

Stim\Resp Absent Present

Absent CR FA

Present M H

Signal Signal + Noise

Data of one observer from Thomas, & Knoblauch (2005) 
Journal of the Optical Society of America A, 22, 2257–2261.



load("GabResp.Rdata")  # load data file
str(GabResp)
 Factor w/ 4 levels "H","FA","M","CR": 1 1 1 3 1 2 2 4 3 4 ...

table(GabResp)   # cross-classify counts of each level
   H   FA    M   CR 
1278  618  514 1174 

# Restructure into data frame  
Gb.df <- data.frame( Resp = GabResp %in% c("H", "FA"),	

                  Stim = GabResp %in% c("H", "M"))
str(Gb.df)
'data.frame':	 3584 obs. of  2 variables:
 $ Resp: logi  TRUE TRUE TRUE FALSE TRUE TRUE ...
 $ Stim: logi  TRUE TRUE TRUE TRUE TRUE FALSE ...

head(Gb.df) # TRUE = Present (1) ; FALSE = ABSENT (0)
   Resp  Stim
1  TRUE  TRUE
2  TRUE  TRUE
3  TRUE  TRUE
4 FALSE  TRUE
5  TRUE  TRUE
6  TRUE FALSE
     ...

Example 1



( Gb.tab <- with(Gb.df, table(Stim, Resp)) ) # tabulate 4 cases
       Resp
Stim    FALSE TRUE    #  Absent  Present
  FALSE  1174  618    #    CR      False Alarm
  TRUE    514 1278    #    Miss    Hit

prop.table(Gb.tab, 1)  # normalize on row sums
       Resp
Stim        FALSE      TRUE   #  Absent  Present
  FALSE 0.6551339 0.3448661   #   P(CR)   P(FA)
  TRUE  0.2868304 0.7131696   #   P(M)    P(H)

diff(qnorm(prop.table(Gb.tab, 1)[, 2]))
   TRUE 
0.961887    # d’

��1(PH)� ��1(PFA)

Example 1
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Alternative parameterization:

where X = 1 if response is “Present” and otherwise 0

Response = �0 + �1X,

PFA = 1� �(c)

c = ��1(1� PFA) = ���1(PFA) = �0

d0 = c� ��1(1� PH) = ���1(PFA) + ��1(PH) = �1



Matrix Representation

E(Y ) = P (Y = 1) = �(X�)

Y = vector of responses (0, 1, 1, 0, ...)
β = (β₀, β₁)

X =

0

BBBBB@

1 1
1 0
1 0
1 1
...

...

1

CCCCCA

Design or model matrix with
1 column for intercept and 
1 column for Absence/Presence of Stimulus

��1(P (Y = 1)) = X� = �0X
0 + �1X

1



Maximum Likelihood Solution (explicit estimation)

L(�;Y,X) =
Y

i

�(�0 + �1Xi)
Yi(1� �(�0 + �1Xi)

1�Yi

py(1� p)1�yBernoulli Likelihood:

`(�;Y,X) =

X

i

Yi log(�(�0 + �1Xi))+

(1� Yi) log(1� �(�0 + �1Xi))

log likelihood to maximize over all experimental trials:



Maximum Likelihood Solution

X <- model.matrix(~ Stim, data = Gb.df)  # create model matrix
head(X)
  (Intercept) StimTRUE
1           1        1
2           1        1
3           1        1
4           1        1
5           1        1
6           1        0
           ...
llik <- function(b, X, Y){ # function to compute log likelihood
	     p <- pnorm(X %*% b)
	    -sum(Y * log(p) + (1 - Y) * log(1 - p))
}

optim(par = c(0, 1), fn = llik, X = X, Y = Gb.df$Resp)  # minimize -log Likelihood

$par
[1] -0.3991859  0.9617757     # estimated parameters

$value
[1] 2228.351                  # -log Likelihood

   ...



optim(c(0, 1), llik, llik, X = X, Y = Gb.df$Resp)$par
[1] -0.3991859  0.9617757  # d’ differs a little from closed form estimate

# insist on stricter relative tolerance at solution
optim(c(0, 1), llik, X = X, Y = Gb.df$Resp, control = list(reltol = 1e-12))$par
[1] -0.3992183  0.9618875  # This now matches closed form solution

# Hessian matrix is the matrix of second partial derivatives of log Likelihood

Gb.opt <- optim(c(0, 1), llik, X = X, Y = Gb.df$Resp, control = list(reltol = 1e-12),
	    hessian = TRUE)  # add argument to calculate Hessian matrix at ML solution

Gb.opt$par  # estimated parameters
[1] -0.3992183  0.9618875

# approximate standard errors obtained from
#  square root of diagonal elements of inverse of Hessian matrix
sqrt(diag(solve(Gb.opt$hessian))) 
0.03048029 0.04374257

Maximum Likelihood Solution



The Generalized Linear Model (GLM) Solution
(not general linear model!!!!)

1.  Response is distributed as an exponential family member
   (Binomial, Poisson, Gamma, Gaussian, ...)?

2. Linear predictor, specifying how the explanatory variables enter the model

3. Link function, g,  relating the mean to the linear predictor

f(y; �,⇥) = exp

�
y� � b(�)

a(⇥)
+ c(y, �)

⇥

⌘ = X�

g(µ) = g[E(Y )] = ⌘ = X�

DeCarlo, L. T. (1998). Signal detection theory and generalized linear models. Psychological Methods, 3, 186-205. 

McCullagh P. and Nelder, J. A. (1989) Generalized Linear Models. London: Chapman and Hall.

Dobson, A. J. (1990) An Introduction to Generalized Linear Models. London: Chapman and Hall.

Knoblauch, K., Maloney L.T., Modeling Psychophysical Data in R. Springer, New York (2012)



Exponential family

The Gaussian, Poisson and Binomial (and others) are members of the exponential family.

f(y; �,⇥) = exp

�
y� � b(�)

a(⇥)
+ c(y, �)

⇥

Gaussian:

Binomial:

f(y; p, n) =

�
n
r

⇥
pr(1� p)n�r =

�
n
r

⇥
exp

⇤
r log

�
p

1� p

⇥
+ n log(1� p)

⌅

f(xi;µ,⇤
2) =

1⇥
2⇥⇤2

e�
1
2
(xi�µ)2

⇥2 =
1⇥
2⇥⇤2

exp

⇤
� 1

⇤2

�
�xiµ+

µ2

2
+

x2
i

2

⇥⌅

Simple expressions for the likelihood, mean and variance that can be
  just plugged in and then the model fit by standard procedures.

canonical link is identity function.

canonical link is log odds ratio (logit) function, but for EVG model we use probit, Φ⁻¹.



head(Gb.df)
   Resp  Stim
1  TRUE  TRUE
2  TRUE  TRUE
3  TRUE  TRUE
4 FALSE  TRUE
5  TRUE  TRUE
6  TRUE FALSE

Resp is a binary response variable
Stim could be considered as a 2-level factor.

Formula Object:  Resp ~ Stim
Linear Predictor:

Stim0:    β₀  = Φ-1(PFA)
Stim1 - Stim0:  β₁ = Φ-1(PH) - Φ-1(PFA) = d’

Resp = �0 + �1Stim

Gb.glm <- glm(Resp ~ Stim, binomial(probit), Gb.df)  #specify binomial family and probit link
summary(Gb.glm)

Call:
glm(formula = Resp ~ Stim, family = binomial(probit), data = Gb.df)

         ...........

Coefficients:
            Estimate Std. Error z value Pr(>|z|)    
(Intercept) -0.39922    0.03048  -13.10   <2e-16 ***
StimTRUE     0.96189    0.04374   21.99   <2e-16 ***   # d’, compare w/ previous calculations
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 4956.4  on 3583  degrees of freedom
Residual deviance: 4456.7  on 3582  degrees of freedom  # twice the log Lik obtained with optim
AIC: 4460.7   #  Deviance (-2 logLik) + 2 * #estimated parameters (here, 2)

GLM solution



Exercises

1.  Gb.df is based on 16 sessions of 224 trials each.  Estimate sensitivity and bias
    for each session individually and plot them as a function of session.  Are there
    any learning trends?  How variable are the measures?

2.  Fit the SDT detection model to the Gb.df data set cumulatively by session, 
    i.e., first the first session, then the first and second sessions, etc. 
    How do the SE’s of the parameter estimates vary with the number of trials?



Hypno.df <- read.table(textConnection("
  Stim Number Resp       Cond
1  Old     69  Yes     Normal
2  New     31  Yes     Normal
3  Old     31   No     Normal
4  New     69   No     Normal
5  Old     89  Yes Hypnotized
6  New     59  Yes Hypnotized
7  Old     11   No Hypnotized
8  New     41   No Hypnotized"), TRUE)

Hypno.df$Cond <- relevel(Hypno.df$Cond, "Normal")

str(Hypno.df)
'data.frame':	 8 obs. of  4 variables:
 $ Stim  : Factor w/ 2 levels "New","Old": 2 1 2 1 2 1 2 1
 $ Number: int  69 31 31 69 89 59 11 41   
 $ Resp  : Factor w/ 2 levels "No","Yes": 2 2 1 1 2 2 1 1
 $ Cond  : Factor w/ 2 levels "Normal","Hypnotized": 1 1 1 1 2 2 2 2

Observers shown 100 images in each of two sessions.
In second session, 50 images were New and 50 were Old
Two groups:  Normal Observer, Hypnotized Observers

Does hypnotism influence recognition memory?

GLM solution:  More complex experimental design

Example from Macmillan, N.A., Creelman, C.D.  (2005)

Here we treat aggregated
binomial responses instead of
individual Bernoulli responses.



m2 <- glm(Resp ~ Stim * Cond, binomial(probit), Hypno.df, 
weights = Number)                 # ~ Stim + Cond + Stim:Cond, 

m1 <- update(m2, . ~ . - Stim:Cond)  # remove interaction of Stim and Cond
m0 <- update(m1, . ~ . - Cond)       # remove main effect of Cond
anova(m0, m1, m2, test = "Chisq")    # nested likelihood ratio tests
Analysis of Deviance Table

Model 1: Resp ~ Stim
Model 2: Resp ~ Stim + Cond
Model 3: Resp ~ Stim * Cond
  Resid. Df Resid. Dev Df Deviance  Pr(>Chi)    
1         6     480.84                          
2         5     452.32  1  28.5225 9.262e-08 ***
3         4     452.32  1   0.0007    0.9792    

library(effects)
allEffects(m2)
 model: Resp ~ Stim * Cond

 Stim*Cond effect
     Cond
Stim  Hypnotized Normal
  New   0.31       0.59
  Old   0.69       0.89

�2(`0 � `1) ⇠ �2
df0�df1



summary(m2)
    ............
Coefficients:
                    Estimate Std. Error z value Pr(>|z|)    
(Intercept)            -0.495850   0.131095  -3.782 0.000155 ***
StimOld                 0.991701   0.185396   5.349 8.84e-08 ***
CondHypnotized          0.723395   0.182188   3.971 7.17e-05 ***
StimOld:CondHypnotized  0.007282   0.279403   0.026 0.979206    
---
    ............
    Null deviance: 531.25  on 7  degrees of freedom
Residual deviance: 452.32  on 4  degrees of freedom
AIC: 460.32

plot(allEffects(m2), type = “link”)

Stim*Cond effect plot
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Coefficients:
                    Estimate Std. Error z value Pr(>|z|)    
(Intercept)            -0.495850   0.131095  -3.782 0.000155 ***
StimOld                 0.991701   0.185396   5.349 8.84e-08 ***
CondHypnotized          0.723395   0.182188   3.971 7.17e-05 ***
StimOld:CondHypnotized  0.007282   0.279403   0.026 0.979206    
---

Stim*Cond effect plot
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The preceding example was an ANOVA type design 
     (all factors, i.e., categorical variables).

By using a covariate (continuous predictor variable, like contrast, 
distance, etc.),
   we can fit psychometric functions, i.e., a regression type design.

By mixing factors and covariates, we have an ANCOVA type design 
  and can compare psychometric functions for different conditions, 
  compare slopes of psychometric funtions, etc.



Complete separation and Hauck-Donner phenomenon
oops <- options(warn = 0)   # re-setting to default for warnings
CS.df <- data.frame(Present = c(10000, 100),
		 	 	 	 Absent = c(0, 9900),
		 	 	 	 Stim = factor(c(1, 0)))
CS.df
  Present Absent Stim
1   10000      0    1
2     100   9900    0   # a bit lopsided but Oh, well...

summary(glm(cbind(Present, Absent) ~ Stim, binomial, CS.df))

Coefficients:
              Estimate Std. Error z value Pr(>|z|)    
(Intercept) -4.595e+00  1.005e-01  -45.72   <2e-16 ***
Stim1        3.650e+01  6.711e+05    0.00        1      # d’ estimate
                              ...
Warning message:
glm.fit: fitted probabilities numerically 0 or 1 occurred  

Complete separation caused by 0 Absent for level Stim = 1,
  but note the estimate of d’ (> 30), and its SE (> 10⁵).
This is called the Hauck-Donner phenomenon, in which binomial models with
  large effects can have even larger standard errors, a frequent symptom of 
  complete separation.
In fitting psychometric functions (having a covariate predictor) this arises with
  infinitely steep psychometric functions. Hauck Jr, W.W., Donner, A.: Wald’s test as applied to hypotheses in logit

analysis. Journal of the American Statistical Association 72, 851–853 (1977)



Changing the link might help.  The preceding example used the default logit link,
 but if we switch to the probit link (that we have been using for its relation to EVG SDT)
 we obtain no warning but still large SE (try this on your own).
Just one Miss is sufficient to mitigate the problem:

Complete separation and Hauck-Donner phenomenon

CS1.df <- data.frame(Present = c(10000, 100),
		 	 	 	 Absent = c(1, 9900),
		 	 	 	 Stim = factor(c(1, 0)))
  Present Absent Stim
1   10000      1    1
2     100   9900    0

summary(glm(cbind(Present, Absent) ~ Stim, binomial, CS1.df))
Coefficients:
            Estimate Std. Error z value Pr(>|z|)    
(Intercept)  -4.5951     0.1005  -45.72   <2e-16 ***
Stim1        13.8055     1.0051   13.74   <2e-16 ***

No warning and SE’s have become more reasonable.  
Moral:  Avoid conditions of certain detection and 
   collect enough data to avoid observing 0 cases.



Forced-choice paradigms

When the observer the signal is 1 of m stimuli presented (m spatial positions, m intervals)
  we speak of m-alternative forced-choice (mAFC) or m-interval forced-choice (mIFC).
It has been reputed that such procedures are less prone to bias1.  Closed form solutions 
exist for 2AFC (2IFC), but not for other values of m.  For an unbiased observer2, the 
probability of a correct response Pc is given by

1but see Yeshurun, Y., Carrasco, M., Maloney, L.T.: Bias and sensitivity in two-interval forced choice procedures: Tests of the 
difference model. Vision Research 48,  1837–1851 (2008).
2 for estimation for a biased observer see DeCarlo, L. T. (2012). On a signal detection approach to m-alternative forced 
choice with bias, with maximum likelihood and Bayesian approaches to estimation. Journal of Mathematical Psychology, 56, 
196-207.

Pc =

Z 1

�1
�(x� d

0)�(x)m�1
d

where φ and Φ are the normal density and distribution functions, respectively.  
Given the Pc, d’ may be calculated by finding the root of

f(d0) = Pc �
Z 1

�1
�(x� d

0)�(x)m�1
d



dprime.mAFC <- function (Pc, m) 
{
    m <- as.integer(m)
    if (m < 2) 
        stop("m must be an integer greater than 1")
    if (!is.integer(m)) 
        stop("m must be an integer")
    if (Pc <= 0 || Pc >= 1) 
        stop("Pc must be in (0,1)")
    est.dp <- function(dp) {
        pr <- function(x) dnorm(x - dp) * pnorm(x)^(m - 1)   # function to integrate
        Pc - integrate(pr, lower = -Inf, upper = Inf)$value  # diff from target value
    }
    dp.res <- uniroot(est.dp, interval = c(-10, 10))  # find zero-crossing, ie, root
    dp.res$root
}

Forced-choice paradigms
From psyphy package:

library(psyphy)
x <- c(0.25, 0.5, 0.75, 0.95)
sapply(x, dprime.mAFC, m = 4)
[1] -1.532277e-06  8.367746e-01  1.682178e+00  2.916233e+00



Go to shiny demo for unequal variance Gaussian demo



Unequal Variance Gaussian Model

Likelihood ratio compared to criterion β:
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to solve the likelihood uniquely for d’.

Must solve likelihood directly by 
optimization.  No closed form or glm 
solution.
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To test equal variance assumption, we need to evaluate the Hit and False Alarm rates 
for 2 or more criterion levels.  One could run several experiments, inducing the 
observer to change criteria across experiments (e.g., modify the reward/punishments 
for generating Hits and False Alarms, modifying the a priori probabilities of Signal 
Present and Absent.

Using a rating scale is a more efficient procedure that entails requiring the observer 
to use several criteria at once.

Run experiment as a simple detection task with Signal and Blank trials randomly 
interspersed.  On each trial, ask the observer to rate his/her confidence on an n-point 
scale that the signal was present, e.g. for a 6 point scale, 

1, highly certain that signal absent
2. fairly certain that signal absent
3. not sure but probably absent
4. not sure but probably present
5. fairly certain that signal present
6. highly certain that signal present

Hypothesis:  Observer uses 6 criterion values to partition decision space.

Rating Scale Paradigms
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ROC curve analysis

Analysis of rating scales:  Signal Detection Theory
Noise Signal + Noise

5 level rating scale:
Hit and False alarm rate
calculated for 4 of the 5
criterion levels yielding
4 points of the ROC curve.



How confident are you
that these are siblings?

Maloney, L. T., and Dal Martello, M. F. (2006). 
Kin recognition and the perceived facial similarity 
of children. Journal of Vision, 6(10):4, 1047–1056.

Analysis of rating scales:  ROC curve

11 point rating scale used:  0 definitely not, ..., 10 definitely
32 observers
30 images each
We’ll ignore the observer differences and treat data set as one big observer.



load(“Faces.Rdata”)  # 11-point rating scale of whether a pair of faces 
                     #  belong to a pair of siblings or not
Faces.tab <- xtabs(~ sibs + SimRating, Faces)  # tabulate sib status w/ ratings
    SimRating
sibs   0  1  2  3  4  5  6  7  8  9 10
   0 119 55 56 52 44 46 27 33 21 13 14
   1  22 15 26 36 34 30 42 53 79 68 75

Faces.csum <- apply(Faces.tab[, 11:1], 1, cumsum)[11:1, ]
Faces.ROC <- Faces.csum/Faces.csum[1, ]      # cumulate and normalize
    sibs
              0         1
  0  1.00000000 1.0000000
  1  0.75208333 0.9541667
  2  0.63750000 0.9229167
  3  0.52083333 0.8687500
  4  0.41250000 0.7937500
  5  0.32083333 0.7229167
  6  0.22500000 0.6604167
  7  0.16875000 0.5729167
  8  0.10000000 0.4625000
  9  0.05625000 0.2979167
  10 0.02916667 0.1562500

Analysis of rating scales:  ROC curve
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Maloney, L. T., and Dal Martello, M. F. (2006). Kin recognition and 
the perceived facial similarity of children. Journal of Vision, 6(10):4, 
1047–1056.



Analysis of rating scales:  ROC curve
Faces.zROC <- qnorm(Faces.ROC)
   sibs
               0           1
  0          Inf         Inf
  1   0.68106030  1.68667082
  2   0.35178434  1.42496726
  3   0.05224518  1.12050177
  4  -0.22111871  0.81950211
  5  -0.46536979  0.59152805
  6  -0.75541503  0.41360056
  7  -0.95911662  0.18380470
  8  -1.28155157 -0.09413741
  9  -1.58705583 -0.53040186
  10 -1.89318453 -1.00999017

Faces.dp <- apply(Faces.zROC[-1, ], 1, diff)  # similar d’ estimates
        1         2         3         4         5         6         7         8 
1.0056105 1.0731829 1.0682566 1.0406208 1.0568978 1.1690156 1.1429213 1.1874142 
        9        10 
1.0566540 0.8831944   # similar d’ estimates for each criterion

c(dp = mean(Faces.dp), SDdp = sd(Faces.dp))
        dp       SDdp 
1.06837681 0.08765449  



Analysis of rating scales:  ROC curve
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1.  Plot zROC curve (H and FA rates transformed by Φ⁻¹), leaving out infinite values
2.  Fit a line of unit slope (y-intercept is d’ estimate)
3.  Back-transform line to ROC plot using Φ.

Only valid when unit slope is acceptable hypothesis.  Cannot use least squares fit
when slope not equal to 1 because error on both axes.



g(E[Pr(Y < ✓k | xk)]) = ✓k �X�

Analysis of rating scales:  Cumulative Link Models

✓1 < ✓2 < · · · < ✓p

such that

g is link function, e.g., Φ for probit case.

Expected probability that rating is less than a criterion value 
given an internal response, xk, is related to a linear predictor.
Multiple ordered intercepts, θk, 
and a linear predictor, Xβ

These models can be fit by ordinal regression methods
(polr function in MASS package and clm function in ordinal package in R)



library(ordinal)
m1 <- clm(ordered(SimRating) ~ sibs, data = Faces, link = "probit")
summary(m1)

Coefficients:
      Estimate Std. Error z value Pr(>|z|)    
sibs1  1.07366    0.07023   15.29   <2e-16 ***  # d’ estimate similar to previous value

Threshold coefficients:
     Estimate Std. Error z value
0|1  -0.66655    0.05791 -11.510   # criterion estimates
1|2  -0.35394    0.05463  -6.479
2|3  -0.05270    0.05341  -0.987
3|4   0.23123    0.05353   4.320
4|5   0.46783    0.05440   8.600
5|6   0.69942    0.05602  12.484
6|7   0.91733    0.05813  15.782
7|8   1.20936    0.06165  19.616
8|9   1.60917    0.06771  23.767
9|10  2.04990    0.07669  26.728

Analysis of rating scales:  Cumulative Link Models



Analysis of rating scales:  Cumulative Link Models

m2 <- clm(ordered(SimRating) ~ sibs, scale = ~sibs, # scale dependent - UVG SDT
          data = Faces, link = "probit")
summary(m2)

Coefficients:
      Estimate Std. Error z value Pr(>|z|)    
sibs1  1.07395    0.07692   13.96   <2e-16 ***

log-scale coefficients:
       Estimate Std. Error z value Pr(>|z|)
sibs1 0.0005636  0.0602593   0.009    0.993 # log(σ) est. close to 1, eq. var.

anova(m1, m2)

Likelihood ratio tests of cumulative link models:
 
   formula:                  scale: link:  threshold:
m1 ordered(SimRating) ~ sibs ~1     probit flexible  
m2 ordered(SimRating) ~ sibs ~sibs  probit flexible  

   no.par    AIC  logLik LR.stat df Pr(>Chisq)
m1     11 4349.7 -2163.8                      
m2     12 4351.7 -2163.8   1e-04  1     0.9925  # Eq. Var. Model not rejected!

g(E[Pr(Y < ✓k)]) =
✓k �X�

�i



DeCarlo, L. T. (2010). On the statistical and theoretical basis of signal 
detection theory and extensions: Unequal variance, random coefficient, and 
mixture models. Journal of Mathematical Psychology, 54, 304-313.

Moscatelli, A, Mezzetti, M, Lacquaniti, F (2012). Modeling psychophysical data 
at the population-level: the generalized linear mixed model. J Vis, 12, 11.

Mixed-effects models

Knoblauch, K., Maloney L.T., Modeling Psychophysical Data in R.
Springer, New York (2012), Chapter 9

Up to here, we have been modeling data from individual observers or simply aggregating
  all observer data together.  But, how do we treat observer differences in SDT models.
One approach is to fit each observer individually, extract the parameters of interest (e.g., d’)
  and fit a linear mixed-effects model to the parameters.  This 2-step procedure is referred to
  as the Parameters as Outcome Model (PAOM) and in some hard to fit models is the only
  tractable method.  
But, it is also possible to extend the mixed-effects model to the GLM framework to obtain
  Generalized Linear Mixed-effects Models (GLMM) that permit estimation of additional
  sources of variance (e.g., due to observers, stimuli, etc.)

Some references:

Rouder J. N., Lu J., Sun D., Speckman P., Morey R., Naveh-Benjamin M. 
(2007). Signal detection models with random participant and item 
effects. Psychometrika , 72, 621–642.



Linear Mixed-effects Models:  lightning review

E(Y ) = X� +Zb+ ✏

✏i ⇠ N (0,�2)

Z model matrix for random effects

b ⇠ N (0,⌃2)

⌃2 variance-covariance matrix for vector b

yij = (�0 + b0,j) + (�1 + b1,j)x+ ✏i,j

fixed-effects
(population level)

random-effects
(individual level)

For example,

We estimate variances, elements of var-cov matrix, not elements of b



Generalized Linear Mixed-effects Models (GLMM)

g(E[Pr(Y = 1)] | bi) = X� +Zb

Bernoulli/Binomial case:

b ⇠ N (0,⌃2)

g is the link function (as before)
Note i) that the response is conditional on the random effects,
         ii) that the variance is known for a binomial model so b
              comprises all of the random effects



Generalized Linear Mixed-effects Models (GLMM)

load("Faces2.Rdata")
str(Faces2)
'data.frame':	 960 obs. of  4 variables:
 $ Resp : Factor w/ 2 levels "0","1": 2 2 2 1 2 2 2 2 2 2 ...
 $ Stim : Factor w/ 2 levels "A","P": 2 2 2 2 2 2 2 2 2 2 ...
 $ Obs  : Factor w/ 32 levels "S1","S2","S3",..: 1 1 1 1 1 1 1 1 1 1 ...
 $ Image: Factor w/ 30 levels "Im1","Im2","Im3",..: 1 2 3 4 5 6 7 8 9 10 ...

Maloney, L. T., and Dal Martello, M. F. (2006). 
Kin recognition and the perceived facial similarity 
of children. Journal of Vision, 6(10):4, 1047–
1056.

From same study as the Faces data set but task was only to judge whether pair of images
   were siblings or not (no rating, so just a Yes/No experiment).
32 observers - random effect
30 images - images also random because a sample from the set of all images of siblings
Because all 32 observers saw all 30 images (in random order), the random effects are crossed

Are these siblings or not?



Generalized Linear Mixed-effects Models (GLMM)

load("Faces2.Rdata")
str(Faces2)

glm(Resp ~ Stim, binomial(probit), Faces2)

Coefficients:
            Estimate Std. Error z value Pr(>|z|)    
(Intercept) -0.35735    0.05855  -6.103 1.04e-09 ***
StimP        0.99941    0.08506  11.749  < 2e-16 ***  #  d’ about 1 as reported

Suppose that we ignore random effects of Obs and Image:



Generalized Linear Mixed-effects Models (GLMM)

g(E[yijk | b0j , b0k]) = (�0 + b0j + b0k) + �1xijk

Random effects of:           Obs         Image  on criterion, β₀

gm1 <- glmer(Resp ~ Stim + (1 | Obs) + (1 | Image), Faces2, binomial(probit))
summary(gm1)
              ...
Random effects:
 Groups Name        Variance Std.Dev.
 Obs    (Intercept) 0.01303  0.1142                # b0j
 Image  (Intercept) 0.55453  0.7447                # b0k 
Number of obs: 960, groups: Obs, 32; Image, 30

Fixed effects:
            Estimate Std. Error z value Pr(>|z|)    
(Intercept)  -0.4777     0.2051  -2.330   0.0198 *  
StimP         1.2573     0.2888   4.354 1.34e-05 ***  # higher d’ than w/ glm
               ...
Correlation of Fixed Effects:
      (Intr)
StimP -0.703                     # high correlation of fixed effects
                                 # Can fix by centering explanatory variables



Generalized Linear Mixed-effects Models (GLMM)
centering explanatory variables and correlation among fixed effects

Faces2$LStim <- with(Faces2, ifelse(Stim == "P", 0.5, -0.5))
gm1c <- glmer(Resp ~ LStim + (1 | Obs) + (1 | Image), Faces2, binomial(probit))
summary(gm1c)
            ...
Random effects:
 Groups Name        Variance Std.Dev.
 Obs    (Intercept) 0.01303  0.1142        # Random effects unaffected
 Image  (Intercept) 0.55452  0.7447  
Number of obs: 960, groups: Obs, 32; Image, 30

Fixed effects:
            Estimate Std. Error z value Pr(>|z|)    
(Intercept)   0.1509     0.1458   1.035    0.301      # β₀ shifted
LStim         1.2573     0.2888   4.354 1.34e-05 ***  # β₁ unaffected
             ...
Correlation of Fixed Effects:
      (Intr)
LStim 0.001                                          # correlation reduced



Generalized Linear Mixed-effects Models (GLMM)
Other random effects fitted and tested - nested sequences of models

gm2a <- glmer(Resp ~ LStim + (LStim + 0 | Obs) +         # rx sensitivity x Obs
	     (1 | Obs) + (1 | Image), Faces2, binomial(probit))
gm2b <- glmer(Resp ~ LStim + (1 | Obs) + (1 | Image) + 
	     (LStim + 0 | Image), Faces2, binomial(probit))     # rx sensitivity x Image
gm3 <- glmer(Resp ~ LStim + (LStim + 0 | Obs) + (LStim + 0| Image) +
	     (1 | Obs) + (1 | Image), Faces2, binomial(probit)) # All rx’s combined

anova(gm1c, gm2a, gm3)  #LR test of one sequence
     Df    AIC    BIC  logLik deviance  Chisq Chi Df Pr(>Chisq)
gm1c  4 1015.9 1035.3 -503.93   1007.9                         
gm2a  5 1015.5 1039.8 -502.73   1005.5 2.4174      1     0.1200
gm3   6 1017.5 1046.7 -502.73   1005.5 0.0000      1     0.9988

anova(gm1c, gm2b, gm3)  #LR test of other sequence
     Df    AIC    BIC  logLik deviance  Chisq Chi Df Pr(>Chisq)
gm1c  4 1015.9 1035.3 -503.93   1007.9                         
gm2b  5 1017.9 1042.2 -503.93   1007.9 0.0000      1       1.00
gm3   6 1017.5 1046.7 -502.73   1005.5 2.4174      1       0.12

#  Test is conservative (forcing variance to border of parameter space)
#    Could reduce p-value by 1/2 or do a bootstrap test (more accurate).
#    Suggests that p ~ 0.1, close to significance

g(E[yijk | b0j , b0k]) = (�0 + b0j + b0k) + (�1 + b1j + b1k)xijk



Random effects:
 Groups Name        Variance Std.Dev.
 Obs    (Intercept) 0.01401  0.1184  
 Obs    LStim       0.12975  0.3602  
 Image  (Intercept) 0.05438  0.2332  
 Image  LStim       2.08581  1.4442  

Not quite working correctly for this version of software, but can be informative 
  about sources of variance.  Some images generate almost perfect categorization, 
  others more difficlut.  Some observers almost perfect responses.
Model would probably fit better with more responses per observer.

Caterpillar plots of random effects
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Profile plots of likelihood surface

correlated fixed effects uncorrelated fixed effects

Plots above diagonal for parameters; plots below for log(parameters).
Note how contours for variances do not close at boundary above diagonal
  and are asymmetric, 
but below log(variance) profiles are more well-behaved



Extension of SDT to scaling:  MLDS
MLDS:  Maximum Likelihood Difference Scaling 

Maloney & Yang (2003) J. Vision, 3, 573-585
Knoblauch & Maloney (2010) J. Stat. Software, 25, 1-25
Knoblauch & Maloney (2012) Modeling Psychophysical Data in R, Springer

stimulus dimension �1 �2 · · · �p

�a �b

�c �d

Quadruples

�a

�b

�c

Triads

Between which pair (a, b) or (b, c)
is the difference greatest?

�i = ( b �  a)� ( d �  c) + ✏

✏ ⇠ N(0,�2)

Decision rule:

Choose upper pair if Δᵢ > 0,
otherwise choose lower pair

Signal Detection Model

Task:   Between which pair (a, b) or (c, d) is the difference greatest?

Estimate scale values,                                   , by maximum likelihood that
best predict the observer’s choices.   Estimated scale has interval properties.
Equal scale differences correspond to equal perceptual differences.

�1,�2, · · · ,�p
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Example:  Correlation in random scatterplots

Typical trial

From:  Knoblauch & Maloney, J. Stat. Soft.,  25,  1 - 26.

Do you perceive the difference in correlations to
be greater between the top or the bottom pair?



Likelihood:
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Extension of SDT to scaling:  MLDS

�i = ( b �  a)� ( d �  c) + ✏

✏ ⇠ N(0,�2)
Choose upper pair if Δᵢ > 0,

otherwise choose lower pair

an equal-variance Gaussian model, scaled so that       are in units of d’ (in theory!).�i

Decision rule:



�i = ( b �  a)� ( d �  c) + ✏

✏ ⇠ N(0,�2)
Choose upper pair if Δᵢ > 0,

otherwise choose lower pair

Decision rule is linear combination of internal responses to stimuli

��1(Pr(Y = 1)) = X�

So we can reformulate the model as a binomial GLM:

  stim.2 stim.3 stim.4 stim.5 stim.6 stim.7 stim.8 stim.9 stim.10 stim.11
      1      0     -1      0     -1      0      1      0       0       0
      0      0      1      0      1      0      0     -1       0       0
     -1      1      0      0      0      1      0     -1       0       0
     -1      0      0      1      1     -1      0      0       0       0
      0      1      0      0      1     -1      0      0       0       0
      0      0      0      1      1      0      0     -1       0       0

...

Example, first six lines of X, 1 column for each stimulus, 1 row for each trial

g(E[Pr(R = 1)]) =  2x2 + · · ·+  pxp

� = ( 2, . . . , p)

Extension of SDT to scaling:  MLDS



Extension of SDT to scaling:  MLDS
Can fit model matrix to responses (1/0, i.e., upper/lower pair choices) by either
  direct ML estimation or via GLM.  MLDS package implements both methods.

library(MLDS)
kk.mlds <- mlds(kk1)  # data from estimation of correlation in scatterplots
Perceptual Scale:
     0    0.1    0.2    0.3    0.4    0.5    0.6    0.7    0.8    0.9   0.98 
 0.000 -0.217  0.173 -0.202  0.421  1.374  1.889  2.453  3.040  3.982  5.440 

sigma:
[1] 1

plot(kk.mlds, type = "b")
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Looks a bit like perceived
differences in correlation 
follow r².

As scaled, ordinate values 
correspond to d’/2, 
so need to multiply by 2 to
put in units of d’.



plot(kk.mlds, standard.scale = TRUE, # normalized to (0, 1) as in Maloney & Yang (2003)
	        xlab = expression(r^2), ylab = "Difference Scale")
xx <- seq(0, 1, len = 100)
lines(xx, xx^2, lwd = 2, col = "blue")

Extension of SDT to scaling:  MLDS
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# fitting with the formula method
#  initial estimate of p and sigma
mlds(~ x^p, p = c(2, 0.1), data = kk1)$par

[1] 2.161583 # pretty close to 2 

It is possible to apply mixed-effects models to MLDS.  
See Knoblauch & Maloney (2012) Modeling Psychophysical Data in R, Springer 
     for further details.



Extensions of SDT:  pespectives

Any time that you can specify the decision rule for a choice experiment,
  you ought to be able to estimate the parameters by maximum likelihood.

If you can express the decision rule as a linear predictor, then you ought to
  be able to be able to express the model as a GLM and fit it with off-the-shelf
  GLM methods, like glm in R.

See Knoblauch & Maloney (2012) Modeling Psychophysical Data in R, Springer
   for further details and applications of glm to fitting psychophysical data 
   SDT framework.

Many of these methods easily extended to Bayesian framework, but that would
   be the subject of a separate course.




